SQLDatabase Toolkit
This will help you getting started with the SQL Database toolkit. For detailed documentation of all SQLDatabaseToolkit
features and configurations head to the API reference.
Tools within the SQLDatabaseToolkit
are designed to interact with a SQL
database.
A common application is to enable agents to answer questions using data in a relational database, potentially in an iterative fashion (e.g., recovering from errors).
⚠️ Security note ⚠️
Building Q&A systems of SQL databases requires executing model-generated SQL queries. There are inherent risks in doing this. Make sure that your database connection permissions are always scoped as narrowly as possible for your chain/agent's needs. This will mitigate though not eliminate the risks of building a model-driven system. For more on general security best practices, see here.
Setup
If you want to get automated tracing from runs of individual tools, you can also set your LangSmith API key by uncommenting below:
# os.environ["LANGSMITH_API_KEY"] = getpass.getpass("Enter your LangSmith API key: ")
# os.environ["LANGSMITH_TRACING"] = "true"
Installation
This toolkit lives in the langchain-community
package:
%pip install --upgrade --quiet langchain-community
For demonstration purposes, we will access a prompt in the LangChain Hub. We will also require langgraph
to demonstrate the use of the toolkit with an agent. This is not required to use the toolkit.
%pip install --upgrade --quiet langchainhub langgraph
Instantiation
The SQLDatabaseToolkit
toolkit requires:
- a SQLDatabase object;
- a LLM or chat model (for instantiating the QuerySQLCheckerTool tool).
Below, we instantiate the toolkit with these objects. Let's first create a database object.
This guide uses the example Chinook
database based on these instructions.
Below we will use the requests
library to pull the .sql
file and create an in-memory SQLite database. Note that this approach is lightweight, but ephemeral and not thread-safe. If you'd prefer, you can follow the instructions to save the file locally as Chinook.db
and instantiate the database via db = SQLDatabase.from_uri("sqlite:///Chinook.db")
.
import sqlite3
import requests
from langchain_community.utilities.sql_database import SQLDatabase
from sqlalchemy import create_engine
from sqlalchemy.pool import StaticPool
def get_engine_for_chinook_db():
"""Pull sql file, populate in-memory database, and create engine."""
url = "https://raw.githubusercontent.com/lerocha/chinook-database/master/ChinookDatabase/DataSources/Chinook_Sqlite.sql"
response = requests.get(url)
sql_script = response.text
connection = sqlite3.connect(":memory:", check_same_thread=False)
connection.executescript(sql_script)
return create_engine(
"sqlite://",
creator=lambda: connection,
poolclass=StaticPool,
connect_args={"check_same_thread": False},
)
engine = get_engine_for_chinook_db()
db = SQLDatabase(engine)
We will also need a LLM or chat model:
- OpenAI
- Anthropic
- Azure
- AWS
- Cohere
- NVIDIA
- FireworksAI
- Groq
- MistralAI
- TogetherAI
pip install -qU langchain-openai
import getpass
import os
os.environ["OPENAI_API_KEY"] = getpass.getpass()
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(model="gpt-4o-mini")
pip install -qU langchain-anthropic
import getpass
import os
os.environ["ANTHROPIC_API_KEY"] = getpass.getpass()
from langchain_anthropic import ChatAnthropic
llm = ChatAnthropic(model="claude-3-5-sonnet-20240620")
pip install -qU langchain-openai
import getpass
import os
os.environ["AZURE_OPENAI_API_KEY"] = getpass.getpass()
from langchain_openai import AzureChatOpenAI
llm = AzureChatOpenAI(
azure_endpoint=os.environ["AZURE_OPENAI_ENDPOINT"],
azure_deployment=os.environ["AZURE_OPENAI_DEPLOYMENT_NAME"],
openai_api_version=os.environ["AZURE_OPENAI_API_VERSION"],
)
pip install -qU langchain-google-vertexai
import getpass
import os
os.environ["GOOGLE_API_KEY"] = getpass.getpass()
from langchain_google_vertexai import ChatVertexAI
llm = ChatVertexAI(model="gemini-1.5-flash")
pip install -qU langchain-aws
# Ensure your AWS credentials are configured
from langchain_aws import ChatBedrock
llm = ChatBedrock(model="anthropic.claude-3-5-sonnet-20240620-v1:0",
beta_use_converse_api=True)
pip install -qU langchain-cohere
import getpass
import os
os.environ["COHERE_API_KEY"] = getpass.getpass()
from langchain_cohere import ChatCohere
llm = ChatCohere(model="command-r-plus")
pip install -qU langchain-nvidia-ai-endpoints
import getpass
import os
os.environ["NVIDIA_API_KEY"] = getpass.getpass()
from langchain_nvidia_ai_endpoints import ChatNVIDIA
llm = ChatNVIDIA(model="meta/llama3-70b-instruct")
pip install -qU langchain-fireworks
import getpass
import os
os.environ["FIREWORKS_API_KEY"] = getpass.getpass()
from langchain_fireworks import ChatFireworks
llm = ChatFireworks(model="accounts/fireworks/models/llama-v3p1-70b-instruct")
pip install -qU langchain-groq
import getpass
import os
os.environ["GROQ_API_KEY"] = getpass.getpass()
from langchain_groq import ChatGroq
llm = ChatGroq(model="llama3-8b-8192")
pip install -qU langchain-mistralai
import getpass
import os
os.environ["MISTRAL_API_KEY"] = getpass.getpass()
from langchain_mistralai import ChatMistralAI
llm = ChatMistralAI(model="mistral-large-latest")
pip install -qU langchain-openai
import getpass
import os
os.environ["TOGETHER_API_KEY"] = getpass.getpass()
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(
base_url="https://api.together.xyz/v1",
api_key=os.environ["TOGETHER_API_KEY"],
model="mistralai/Mixtral-8x7B-Instruct-v0.1",
)
We can now instantiate the toolkit:
from langchain_community.agent_toolkits.sql.toolkit import SQLDatabaseToolkit
toolkit = SQLDatabaseToolkit(db=db, llm=llm)
Tools
View available tools:
toolkit.get_tools()
[QuerySQLDataBaseTool(description="Input to this tool is a detailed and correct SQL query, output is a result from the database. If the query is not correct, an error message will be returned. If an error is returned, rewrite the query, check the query, and try again. If you encounter an issue with Unknown column 'xxxx' in 'field list', use sql_db_schema to query the correct table fields.", db=<langchain_community.utilities.sql_database.SQLDatabase object at 0x105e02860>),
InfoSQLDatabaseTool(description='Input to this tool is a comma-separated list of tables, output is the schema and sample rows for those tables. Be sure that the tables actually exist by calling sql_db_list_tables first! Example Input: table1, table2, table3', db=<langchain_community.utilities.sql_database.SQLDatabase object at 0x105e02860>),
ListSQLDatabaseTool(db=<langchain_community.utilities.sql_database.SQLDatabase object at 0x105e02860>),
QuerySQLCheckerTool(description='Use this tool to double check if your query is correct before executing it. Always use this tool before executing a query with sql_db_query!', db=<langchain_community.utilities.sql_database.SQLDatabase object at 0x105e02860>, llm=ChatOpenAI(client=<openai.resources.chat.completions.Completions object at 0x1148a97b0>, async_client=<openai.resources.chat.completions.AsyncCompletions object at 0x1148aaec0>, temperature=0.0, openai_api_key=SecretStr('**********'), openai_proxy=''), llm_chain=LLMChain(prompt=PromptTemplate(input_variables=['dialect', 'query'], template='\n{query}\nDouble check the {dialect} query above for common mistakes, including:\n- Using NOT IN with NULL values\n- Using UNION when UNION ALL should have been used\n- Using BETWEEN for exclusive ranges\n- Data type mismatch in predicates\n- Properly quoting identifiers\n- Using the correct number of arguments for functions\n- Casting to the correct data type\n- Using the proper columns for joins\n\nIf there are any of the above mistakes, rewrite the query. If there are no mistakes, just reproduce the original query.\n\nOutput the final SQL query only.\n\nSQL Query: '), llm=ChatOpenAI(client=<openai.resources.chat.completions.Completions object at 0x1148a97b0>, async_client=<openai.resources.chat.completions.AsyncCompletions object at 0x1148aaec0>, temperature=0.0, openai_api_key=SecretStr('**********'), openai_proxy='')))]
You can use the individual tools directly:
from langchain_community.tools.sql_database.tool import (
InfoSQLDatabaseTool,
ListSQLDatabaseTool,
QuerySQLCheckerTool,
QuerySQLDataBaseTool,
)
Use within an agent
Following the SQL Q&A Tutorial, below we equip a simple question-answering agent with the tools in our toolkit. First we pull a relevant prompt and populate it with its required parameters:
from langchain import hub
prompt_template = hub.pull("langchain-ai/sql-agent-system-prompt")
assert len(prompt_template.messages) == 1
print(prompt_template.input_variables)
['dialect', 'top_k']
system_message = prompt_template.format(dialect="SQLite", top_k=5)
We then instantiate the agent:
from langgraph.prebuilt import create_react_agent
agent_executor = create_react_agent(
llm, toolkit.get_tools(), state_modifier=system_message
)
And issue it a query:
example_query = "Which country's customers spent the most?"
events = agent_executor.stream(
{"messages": [("user", example_query)]},
stream_mode="values",
)
for event in events:
event["messages"][-1].pretty_print()
================================[1m Human Message [0m=================================
Which country's customers spent the most?
==================================[1m Ai Message [0m==================================
Tool Calls:
sql_db_list_tables (call_eiheSxiL0s90KE50XyBnBtJY)
Call ID: call_eiheSxiL0s90KE50XyBnBtJY
Args:
=================================[1m Tool Message [0m=================================
Name: sql_db_list_tables
Album, Artist, Customer, Employee, Genre, Invoice, InvoiceLine, MediaType, Playlist, PlaylistTrack, Track
==================================[1m Ai Message [0m==================================
Tool Calls:
sql_db_schema (call_YKwGWt4UUVmxxY7vjjBDzFLJ)
Call ID: call_YKwGWt4UUVmxxY7vjjBDzFLJ
Args:
table_names: Customer, Invoice, InvoiceLine
=================================[1m Tool Message [0m=================================
Name: sql_db_schema
CREATE TABLE "Customer" (
"CustomerId" INTEGER NOT NULL,
"FirstName" NVARCHAR(40) NOT NULL,
"LastName" NVARCHAR(20) NOT NULL,
"Company" NVARCHAR(80),
"Address" NVARCHAR(70),
"City" NVARCHAR(40),
"State" NVARCHAR(40),
"Country" NVARCHAR(40),
"PostalCode" NVARCHAR(10),
"Phone" NVARCHAR(24),
"Fax" NVARCHAR(24),
"Email" NVARCHAR(60) NOT NULL,
"SupportRepId" INTEGER,
PRIMARY KEY ("CustomerId"),
FOREIGN KEY("SupportRepId") REFERENCES "Employee" ("EmployeeId")
)
/*
3 rows from Customer table:
CustomerId FirstName LastName Company Address City State Country PostalCode Phone Fax Email SupportRepId
1 Luís Gonçalves Embraer - Empresa Brasileira de Aeronáutica S.A. Av. Brigadeiro Faria Lima, 2170 São José dos Campos SP Brazil 12227-000 +55 (12) 3923-5555 +55 (12) 3923-5566 luisg@embraer.com.br 3
2 Leonie Köhler None Theodor-Heuss-Straße 34 Stuttgart None Germany 70174 +49 0711 2842222 None leonekohler@surfeu.de 5
3 François Tremblay None 1498 rue Bélanger Montréal QC Canada H2G 1A7 +1 (514) 721-4711 None ftremblay@gmail.com 3
*/
CREATE TABLE "Invoice" (
"InvoiceId" INTEGER NOT NULL,
"CustomerId" INTEGER NOT NULL,
"InvoiceDate" DATETIME NOT NULL,
"BillingAddress" NVARCHAR(70),
"BillingCity" NVARCHAR(40),
"BillingState" NVARCHAR(40),
"BillingCountry" NVARCHAR(40),
"BillingPostalCode" NVARCHAR(10),
"Total" NUMERIC(10, 2) NOT NULL,
PRIMARY KEY ("InvoiceId"),
FOREIGN KEY("CustomerId") REFERENCES "Customer" ("CustomerId")
)
/*
3 rows from Invoice table:
InvoiceId CustomerId InvoiceDate BillingAddress BillingCity BillingState BillingCountry BillingPostalCode Total
1 2 2021-01-01 00:00:00 Theodor-Heuss-Straße 34 Stuttgart None Germany 70174 1.98
2 4 2021-01-02 00:00:00 Ullevålsveien 14 Oslo None Norway 0171 3.96
3 8 2021-01-03 00:00:00 Grétrystraat 63 Brussels None Belgium 1000 5.94
*/
CREATE TABLE "InvoiceLine" (
"InvoiceLineId" INTEGER NOT NULL,
"InvoiceId" INTEGER NOT NULL,
"TrackId" INTEGER NOT NULL,
"UnitPrice" NUMERIC(10, 2) NOT NULL,
"Quantity" INTEGER NOT NULL,
PRIMARY KEY ("InvoiceLineId"),
FOREIGN KEY("TrackId") REFERENCES "Track" ("TrackId"),
FOREIGN KEY("InvoiceId") REFERENCES "Invoice" ("InvoiceId")
)
/*
3 rows from InvoiceLine table:
InvoiceLineId InvoiceId TrackId UnitPrice Quantity
1 1 2 0.99 1
2 1 4 0.99 1
3 2 6 0.99 1
*/
==================================[1m Ai Message [0m==================================
Tool Calls:
sql_db_query (call_7WBDcMxl1h7MnI05njx1q8V9)
Call ID: call_7WBDcMxl1h7MnI05njx1q8V9
Args:
query: SELECT c.Country, SUM(i.Total) AS TotalSpent FROM Customer c JOIN Invoice i ON c.CustomerId = i.CustomerId GROUP BY c.Country ORDER BY TotalSpent DESC LIMIT 1
=================================[1m Tool Message [0m=================================
Name: sql_db_query
[('USA', 523.0600000000003)]
==================================[1m Ai Message [0m==================================
Customers from the USA spent the most, with a total amount spent of $523.06.
We can also observe the agent recover from an error:
example_query = "Who are the top 3 best selling artists?"
events = agent_executor.stream(
{"messages": [("user", example_query)]},
stream_mode="values",
)
for event in events:
event["messages"][-1].pretty_print()
================================[1m Human Message [0m=================================
Who are the top 3 best selling artists?
==================================[1m Ai Message [0m==================================
Tool Calls:
sql_db_query (call_9F6Bp2vwsDkeLW6FsJFqLiet)
Call ID: call_9F6Bp2vwsDkeLW6FsJFqLiet
Args:
query: SELECT artist_name, SUM(quantity) AS total_sold FROM sales GROUP BY artist_name ORDER BY total_sold DESC LIMIT 3
=================================[1m Tool Message [0m=================================
Name: sql_db_query
Error: (sqlite3.OperationalError) no such table: sales
[SQL: SELECT artist_name, SUM(quantity) AS total_sold FROM sales GROUP BY artist_name ORDER BY total_sold DESC LIMIT 3]
(Background on this error at: https://sqlalche.me/e/20/e3q8)
==================================[1m Ai Message [0m==================================
Tool Calls:
sql_db_list_tables (call_Gx5adzWnrBDIIxzUDzsn83zO)
Call ID: call_Gx5adzWnrBDIIxzUDzsn83zO
Args:
=================================[1m Tool Message [0m=================================
Name: sql_db_list_tables
Album, Artist, Customer, Employee, Genre, Invoice, InvoiceLine, MediaType, Playlist, PlaylistTrack, Track
==================================[1m Ai Message [0m==================================
Tool Calls:
sql_db_schema (call_ftywrZgEgGWLrnk9dYC0xtZv)
Call ID: call_ftywrZgEgGWLrnk9dYC0xtZv
Args:
table_names: Artist, Album, InvoiceLine
=================================[1m Tool Message [0m=================================
Name: sql_db_schema
CREATE TABLE "Album" (
"AlbumId" INTEGER NOT NULL,
"Title" NVARCHAR(160) NOT NULL,
"ArtistId" INTEGER NOT NULL,
PRIMARY KEY ("AlbumId"),
FOREIGN KEY("ArtistId") REFERENCES "Artist" ("ArtistId")
)
/*
3 rows from Album table:
AlbumId Title ArtistId
1 For Those About To Rock We Salute You 1
2 Balls to the Wall 2
3 Restless and Wild 2
*/
CREATE TABLE "Artist" (
"ArtistId" INTEGER NOT NULL,
"Name" NVARCHAR(120),
PRIMARY KEY ("ArtistId")
)
/*
3 rows from Artist table:
ArtistId Name
1 AC/DC
2 Accept
3 Aerosmith
*/
CREATE TABLE "InvoiceLine" (
"InvoiceLineId" INTEGER NOT NULL,
"InvoiceId" INTEGER NOT NULL,
"TrackId" INTEGER NOT NULL,
"UnitPrice" NUMERIC(10, 2) NOT NULL,
"Quantity" INTEGER NOT NULL,
PRIMARY KEY ("InvoiceLineId"),
FOREIGN KEY("TrackId") REFERENCES "Track" ("TrackId"),
FOREIGN KEY("InvoiceId") REFERENCES "Invoice" ("InvoiceId")
)
/*
3 rows from InvoiceLine table:
InvoiceLineId InvoiceId TrackId UnitPrice Quantity
1 1 2 0.99 1
2 1 4 0.99 1
3 2 6 0.99 1
*/
==================================[1m Ai Message [0m==================================
Tool Calls:
sql_db_query (call_i6n3lmS7E2ZivN758VOayTiy)
Call ID: call_i6n3lmS7E2ZivN758VOayTiy
Args:
query: SELECT Artist.Name AS artist_name, SUM(InvoiceLine.Quantity) AS total_sold FROM Artist JOIN Album ON Artist.ArtistId = Album.ArtistId JOIN Track ON Album.AlbumId = Track.AlbumId JOIN InvoiceLine ON Track.TrackId = InvoiceLine.TrackId GROUP BY Artist.Name ORDER BY total_sold DESC LIMIT 3
=================================[1m Tool Message [0m=================================
Name: sql_db_query
[('Iron Maiden', 140), ('U2', 107), ('Metallica', 91)]
==================================[1m Ai Message [0m==================================
The top 3 best selling artists are:
1. Iron Maiden - 140 units sold
2. U2 - 107 units sold
3. Metallica - 91 units sold
Specific functionality
SQLDatabaseToolkit
implements a .get_context method as a convenience for use in prompts or other contexts.
⚠️ Disclaimer ⚠️ : The agent may generate insert/update/delete queries. When this is not expected, use a custom prompt or create a SQL users without write permissions.
The final user might overload your SQL database by asking a simple question such as "run the biggest query possible". The generated query might look like:
SELECT * FROM "public"."users"
JOIN "public"."user_permissions" ON "public"."users".id = "public"."user_permissions".user_id
JOIN "public"."projects" ON "public"."users".id = "public"."projects".user_id
JOIN "public"."events" ON "public"."projects".id = "public"."events".project_id;
For a transactional SQL database, if one of the table above contains millions of rows, the query might cause trouble to other applications using the same database.
Most datawarehouse oriented databases support user-level quota, for limiting resource usage.
API reference
For detailed documentation of all SQLDatabaseToolkit features and configurations head to the API reference.
Related
- Tool conceptual guide
- Tool how-to guides